nosql - 주의 사항

DB/NoSQL 2013. 4. 29. 11:39


짧으나마 NoSQL 경험해보고 배운 내용을 정리해보면

1. RDB는 Entity를 정의하고 데이타 모델링을 정의한 후에, 쿼리와 APP을 개발한다. 반대로 NoSQL은 App을 먼저 디자인하고, 필요한 쿼리 결과를 먼저 정의 한후에, 그에 맞춰서 데이타 모델링을 해야 한다. 

2. 절대 Normalization은 하지 말고, DeNormalization을 할것. 데이타 중복을 허용하여 성능을 높이고, 데이타안에 데이타를 넣는 (Composition) 모델등을 사용하여 Query 수를 줄여야 한다.

3. 내 애플리케이션의 서비스 특성과 이에 맞는 NoSQL을 선택한다. BigTable 계열, Cassandra 계열, Document DB 계열등 많은 계열의 NoSQL이 있고, 그 특성도 매우 다르다 (언뜻 보면 다 같아 보이지만). 서비스를 이해하고, 사용하고자 하는 NoSQL을 완전히 이해한 다음에 시작해야 실수를 막을 수 있다.

4. NoSQL 쿼리가 실제 몇개의 물리 노드에 걸쳐서 수행되는지에 대한 이해가 있어야 제대로된 쿼리 디자인이 가능하다.

5. NoSQL 디자인은 DB 와 APP 뿐만 아니라 인프라 (네트워크,디스크)에 대한 디자인을 함께 해야 한다.

6. 대부분의 NoSQL DB는 인증이나 인가 체계가 없어서 보안에 매우 취약하기 때문에 별도의 보안 체계를 마련해야 한다. (방화벽이나 Reverse Proxy 등)


출처 - http://bcho.tistory.com/625



'DB > NoSQL' 카테고리의 다른 글

nosql - 개념 설명  (0) 2013.04.29
nosql - reference site  (0) 2013.04.29
nosql - list  (0) 2013.04.29
NoSQL - 데이타 모델링  (0) 2013.04.29
NoSQL - 소개  (0) 2013.04.29
Posted by linuxism
,

nosql - list

DB/NoSQL 2013. 4. 29. 11:36


Google의 BigTable에서 시작된 것들
- HBase (Java)
- HyperTable (C++) 
주로 대규모 분산처리 특히 Map&Reduce에 알맞고, 동시 대규모 클라이언트를 지원하는데 뛰어 나다

Amazon Dynamo 로 부터 시작된 것들
- Voldemork
- Riak 

FaceBook에서 시작된것
- Cassandra 
Write에 Optimize되었으며, Read는 Write에 비해 느림. 대규모 데이타 저장에 최적화됨

그밖에 Mongo 계열
-MongoDB 쉽다. 그리고 AutoSharding과 Balacing 제공. 10gen에서 Commercial Support
-CouchDB : MongoDB와 특성은 유사하나 내부 기술 구조는 다름


출처 - http://bcho.tistory.com/610



'DB > NoSQL' 카테고리의 다른 글

nosql - 개념 설명  (0) 2013.04.29
nosql - reference site  (0) 2013.04.29
nosql - 주의 사항  (0) 2013.04.29
NoSQL - 데이타 모델링  (0) 2013.04.29
NoSQL - 소개  (0) 2013.04.29
Posted by linuxism
,

mongodb - 고려 사항

DB/MongoDB 2013. 4. 29. 02:32


요즘 대용량 데이타 처리 때문에, NoSQL을 머릿속에만 올려놓고, 근래에나 되서 이래서는 안되겠다 해서 직접 자료를 찾아보고 있습니다.

NoSQL은 Cassandra, HBase, Mongo, Riak등을 후보군으로 뒀는데,

Cassandra는 FaceBook에서 Donation해서 만든 분산 DB로 개인적으로는 가장 신뢰가 가기는 했지만, 국내의 많은 블로그 포스팅등을 읽어보면, 안정성이나 사용성이 떨어진다는 것이다. 즉 제품은 좋은데 야생마처럼 잘 쓰지 못하면 모쓰는 제품이라는 이야기. 일단 후보로 남겨놓고 패스.

HBase는 Hadoop File System (HDFS)를 기반으로 설계되었는데, 검색해보니 생각보다 많이 사용이 안되는 것 같아서 패스
Riak도 신생이라서 패스

결국은 Mongo와 Cassandra에서 고민하게 되었는데,
신생 MongoDB가 얼마전부터 사람들 입에 많이 입에 오르내리고 있다. 검색을 해봐도 많이 나오고
이는 즉 사용이 쉽다는 것을 의미하고 또한 10gen이라는 회사에서 제품에 대한 Ownership을 지고 서포트와 컨설팅 그리고 라이센스를 제공하고 있다. 둘다 오픈소스(?)이긴 하지만 자기네들만이 사용하기 위해 만든 Cassandra와는 태생 자체가 다르다는 사실

요즘 분산 아키텍쳐를 보면 대부분 비슷한것이 앞단에 Load Balancing을 해주는 Proxy 를 두고, 뒤에 데이타 처리를 하는 Processing Node를 두는 것이 일반적인데, SWIFT도 글코, MogileFS도 글코, 분산 처리 환경인 Gearman이나 Hadoop도 결국은 비슷하다. 아니나 다를까, MongoDB도 유사한 구조를 갖는다.

일단 기능적인 특징을 보면

Indexing이 가능하다.
이말은 즉 빠른 Search가 가능하다는 이야기인데, 문서를 찾아보니, Index는 메모리에 저장되기 때문에, 메모리 크기에 영향을 많이 받는다. 즉 Deployment설계할때, 하드웨어의 Memory 사이즈가 중요한 Factor 라는 것

GridFS 기반의 Blob 데이타 저장 지원
GridFS라는 분산 파일 시스템을 사용하여 Binary 데이타 저장이 가능하다. 일반적인 아키텍쳐에서 meta 정보를 DBMS에, binary를 File System에 나눠서 저장할때, 이로 인해서 발생되는 데이타 일관성에 불일치를 방지할 수 있다는 점에서는 혁신적인데.. 문제는...
국내의 어느 블로거가 테스트한 데이타 http://symplog.tistory.com/entry/MongoDB-MongoDB-GridFS-%EB%B6%80%ED%95%98%ED%85%8C%EC%8A%A4%ED%8A%B8 를 보면, 파일 업로드 다운로드 성능이 그리 뛰어나지 않은 듯 하다.
큰 파일을 저장할때, 파일을 Chunk 단위로 나눠서 다운로드, 업로드 하는데 이는 메모리 사용면에서 효율성을 제공한다. (한꺼번에 다 읽거나 쓸때 한꺼번에 Flush를 하면 파일을 메모리에 가지고 있는 동안, 파일 사이즈가 크면 Out Of Memory를 유발할 수 있기 때문에..) 1.7 버전 이하에서는 4M, 1.7 이상에서는 16M의 Chunk Size를 제공하는 것 같은데. 
문제는 Opendedup에서도 테스트해봤지만, 이 Chunk 단위로 파일을 나누는 작업이 보통 일이 아니라는, 일단 태생 자체가 작은 Blob 데이타를 저장하기 위함이지 대용량 파일을 저장하기 위함은 아닌 것 같은데,
http://blog.wordnik.com/12-months-with-mongodb 블로그를 보면 12billion (약 120억개)의 레코드를 저장하고, 여기에 음악 파일을 저장하는 것을 보면 가능하다고도 볼 수 있다. 보통 음악 파일이 4M 안팍인것을 감안하면 괜찮은 시나리오인 듯 하나 500GB가 넘어가는 비디오 파일을 저장할때는 어느정도 성능을 감당할 수 있을지는 미지수 이다.
만약에 안정적으로 GridFS가 대용량 파일을 저장할 수 있는 구조를 제공한다면 사람들이 SWIFT,MogileFS,GlusterFS를 사용하지 않고 모두 MongoDB를 사용해야 하지 않을까? 
이 부분은 나름 테스트가 필요한 부분으로 남겨놓고 넘어간다.

Querying
아울러 RDBMS 와 같은 Query를 제공한다. (물론 RDBMS보다 한참 못 미치기는 하지만)
Key/Value Store만 지원하는 다른 NoSQL에 비하면 매력 적인 기능

Replication
http://www.mongodb.org/display/DOCS/Master+Slave
Master-Slave Replication도 지원하네, Query Off Loading 구현도 가능하겠다.

Sharding
그외에 자체적으로 데이타 Sharding 아키텍쳐를 지원한다. 요즘 이게 유행인지 MySQL 최신 버전도 자체적으로 Sharding을 지원한다. Sharding을 사용하면 1000개의 Shard까지는 거뜬히 지원할 수 있는 것 처럼 나오는데, 이건 테스트 하기는 어려울테고, 성능 데이타를 레퍼런스 하는 수 밖에

일단 완성도나 기능들이 높아 보이는 것 같은데..
깔아서 테스트해보고, 10gen 에서 컨설팅 불러서 직접 들여다 봐야 몬가 나오지 않을까?
=== 첨언 ===
구조를 살펴보니, 앞에서 언급했던 것처럼 SWIFT나 MogileFS와 상당히 유사하다
앞단에 Load Balancing 역할을 해주는 mongos 라는 프로세스들이 뜨고
뒷단에 실제 데이타를 저장하는 mongod라는 프로세스들이 뜨는데, 여기서 재미있는 것은 데이타 Replication을 하는데, 각 Shard당 3개의 인스턴스를 제공하도록 구성을 권장한다. Swift등에서 흔히 이야기 하는 3 Copy다. 데이타 안정성등을 위하는 건데. (딱 봐도, 하드웨어 비용이 장난 아니겠다.)

더불어서 MogoDB는 Cassandra나 HBase에 비해서 나은 성능을 갖는데 앞에서 설명한 바와 같이 Memory를 이용한 Indexing등으로, 반대로 이야기 하면 Memory가 충분히 있어야 한다는 이야기고, 비싸다는 이야기다.

큐브리드 블로그에 보면 재미있는 내용이 있는데 http://blog.cubrid.org/dev-platform/nosql-benchmarking/

Cassandra and HBase is for processing full-scale large amounts of data, while MongoDB can be used quickly, schema-free when using a certain amount of data.

MongoDB adopts a documented-oriented format, so it is more similar to RDBMS than a key-value or column oriented format.

MongoDB operates on a memory base and places high performance above data scalability. If reading and writing is conducted within the usable memory, then high-performance is possible. However, performance is not guaranteed if operations exceed the given memory. Therefore, MongoDB should be used as a medium or small-sized storage system.

한마디로, 성능은 좋지만 빅데이타는 Cassandra나 HBase를 쓰고 중소형에만 MongoDB를 쓰라는 것이다.
RDBMS에 유사하고 강력한 Feature, 사용의 편리성의 입장에서 MongoDB가 국내외에서 많은 사용층을 가지고 있는 것이 대강 이해는 된다. 한편으로는 MongoDB의 한계를 벗어날만한 데이타를 아직까지 사용해본 적이 없다는 반증도 될것이다. 10~20억 데이타는 내가 아는한에서는 RDBMS에서도 크게 문제가 없다. 문제는 10~20억을 넘는 100억, 1000억개의 데이타 핸들링에도 MongoDB가 버텨 줄것이냐인데.. 데이타 한건당 대략 10K만 잡아도 용량이 1Peta 이다. 3TB 노드를 300개 정도 연결해야 한다는 것인데... MongoDB에서 보통 1000개의 Instance를 이야기를 하니 이론상으로는 가능할것 같기는 한데
첫번째는 어렵지 않을까? 하는 생각이고, (그만한 레퍼런스가 있냐?) 두번째는 만약에 된다고 하더라도 돈이 엄청 들어갈것 같은 느낌이다. Swift도 MogileFS도 저가라고는 말하지만 소프트웨어가 저가인거지 3Copy로 하드웨어 구성을 벤더 제품으로 하면 마찬가지라는... (Commodity 하드웨어라면 몰라도..)
  이래 저래 자료를 찾아볼 필요가 있다.



출처 - http://bcho.tistory.com/601




'DB > MongoDB' 카테고리의 다른 글

mongodb - mongod.conf(web interface enable)  (0) 2013.05.19
mongo - 보안 및 계정 관리  (0) 2013.04.30
mongodb - Hadoop과 연동한 구축사례  (0) 2013.04.29
MongoDB 소개  (0) 2013.01.07
mongodb wiki intro  (0) 2013.01.07
Posted by linuxism
,